
PyTrackDat
Release 0.2.1

Mar 10, 2021





Installation

1 Dependencies 1
1.1 Installing Python 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 (Windows Only) SSH Utilities 3
2.1 Mini-Tutorial: Using KiTTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Mini-Tutorial: Using WinSCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Getting PyTrackDat 5
3.1 Getting Stable Versions Through PyPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Getting Development Versions (Advanced Users Only) . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 (Optional) Step 1: Data Analyzer 7

5 Step 2: Design File Layout and Customization 9
5.1 Design File Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Design File Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Step 3: Database Generator 17
6.1 Running the Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 What is a production build? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Step 4: Testing 19
7.1 The Quick Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 The Manual Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 When the Server is Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Step 5: Deploying the Application 21
8.1 Deploying the End Result on DigitalOcean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 Deploying the End Result on an Existing Linux Server . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3 Note about Ports and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 An Example Database, Start to Finish 29

10 Updating the Schema 31

11 Updating the site on DigitalOcean or similar 33

12 Introduction 35

i



13 Data Management 37
13.1 Importing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
13.2 Exporting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

14 Exporting Labels with baRcodeR 39

15 Advanced Filtering with Django Advanced Filters 41

16 GIS Data Support 43

17 KiTTY Mini Tutorial 45

18 WinSCP Mini Tutorial for PyTrackDat Setup 49

19 Indices and tables 53

ii



CHAPTER 1

Dependencies

Make sure that Python 3 and pip3 are installed.

If Python 3 is already installed, update pip3 to the latest version with the following command, run in a Terminal
window (macOS/Linux) or in Command Prompt (Windows):

macOS/Linux:

pip3 install --upgrade pip

Windows:

pip install --upgrade pip

1.1 Installing Python 3

For most new Linux distributions, Python 3 should come pre-installed.

For macOS or Windows, please go to the official Python website and download the latest version of Python 3 (as of
the time of writing, 3.7.3). Run the installer downloaded from this site and follow the instructions on-screen.

1.1.1 Important: Special Windows Installation Instructions

When installing Python 3 on Windows, make sure to check the following checkbox (“Add Python 3 to PATH”), which
will appear on the first step of the installation process:

This ensures that Python 3 and pip3 are available from the Command Prompt.

1

https://www.python.org/downloads/


PyTrackDat, Release 0.2.1

2 Chapter 1. Dependencies



CHAPTER 2

(Windows Only) SSH Utilities

If you already have SSH and SCP utilities installed, or are not running Windows, this step can be skipped.

Windows does not include any programs for accessing remote servers or copying files to them. Both of these actions
are needed when deploying a PyTrackDat application to a remote server. However, there are free utilities available for
download which can help with these tasks.

To download the two utilities needed, visit KiTTY’s download page and download kitty_portable.exe. Then,
visit WinSCP’s download page and download the portable WinSCP version. Make sure to extract the WinSCP .zip
file before running the executable WinSCP.exe inside. The first executable provides a way to access remote servers,
and the second executable allows the copying of files to remote servers.

2.1 Mini-Tutorial: Using KiTTY

KiTTY is a tool for logging into and remotely administering servers via a command-line interface. This remote
administration is useful when deploying a PyTrackDat application to a remote server.

We have prepared a mini-tutorial on using KiTTY on a Windows computer.

2.2 Mini-Tutorial: Using WinSCP

WinSCP is a tool for copying files to a remote server using a Windows computer. A tool similar to this must be used
to copy the PyTrackDat application onto a server for “production” (i.e. real) use.

We have prepared a mini-tutorial on using WinSCP.

3

http://www.9bis.net/kitty/?page=Download
https://winscp.net/eng/downloads.php


PyTrackDat, Release 0.2.1

4 Chapter 2. (Windows Only) SSH Utilities



CHAPTER 3

Getting PyTrackDat

3.1 Getting Stable Versions Through PyPI

The easiest way to download PyTrackDat is through PyPI (the Python Package Index) using pip.

To download the latest stable release, run the following command:

macOS/Linux:

pip3 install pytrackdat

Windows:

pip install pytrackdat

Once downloaded, open a Terminal window (macOS/Linux) or a Command Prompt (Windows) and cd to a working
directory where you want your PyTrackDat files to live:

macOS/Linux:

cd /path/to/pytrackdat

Windows:

cd \path\to\pytrackdat

3.2 Getting Development Versions (Advanced Users Only)

To get the latest development version of PyTrackDat, clone the repository (provided Git is installed) using the follow-
ing command in a Terminal or Command Prompt window:

git clone https://github.com/pytrackdat/pytrackdat.git

5



PyTrackDat, Release 0.2.1

6 Chapter 3. Getting PyTrackDat



CHAPTER 4

(Optional) Step 1: Data Analyzer

PyTrackDat includes an automatic data analyzer which can read a one or a series of CSV files in (i.e. data files with
variable names in the headers), as well as their desired relation names, and generate a PyTrackDat design file, which
contains human-readable CSV-formatted instructions for the structure of the database. This design file is not final, and
should be checked over and added to/edited by a human. However, it provides a good starting point for generating a
database for a particular dataset.

To run the data analyzer on one or more CSV-formatted data files, run the following command:

ptd-analyze design.csv sample_type_1 samples1.csv sample_type_2 samples2.csv [...]

Where design.csv is the name of the design file to output, and sample_type_1 and sample_type_2 are
singular terms for the types of entries stored in samples1.csv and samples2.csv, respectively. Feel free to add
more sample types (with corresponding data files) as necessary for your dataset, or leave out sample_type_2 and
samples2.csv if only one data type is necessary for the database.

7



PyTrackDat, Release 0.2.1

8 Chapter 4. (Optional) Step 1: Data Analyzer



CHAPTER 5

Step 2: Design File Layout and Customization

A PyTrackDat design file contains specifications for all tables in the database within a single CSV file. The file consists
of blocks, each of which corresponds to the specification for a single table, based on each of the CSV files passed to
the script. Blocks are separated by blank lines.

A single block may look like this:

my_samplenew field
name

data
type

nul-
lable?

null
values

de-
fault

description show in
table?

additional
fields. . .

Date date integer false Date the sample was
collected.

true

Site ID site_id foreign
key

false Site where the sam-
ple was found.

true

. . .

Design files should not be left as-is after generation via ptd-analyze. The script does its best to infer data types
from the columns, but is not guaranteed to do this perfectly. Additionally, it is best practice to add a field description
(under the description header) to provide human users additional information about what type of data is stored in the
field.

For each generated design file, users should examine the file using the following checklist:

1. Check that data types and type-specific options are correct for each field

2. Add human-readable descriptions for each field

3. Change desired foreign keys from their detected data type to the foreign key data type, following the foreign
key documentation to link them to the correct table.

5.1 Design File Customization

In almost all cases, there are data types and settings that will be impossible for the analyze.py script to detect. For
example, a foreign key, which is a data type that allows a row in a table to refer to a different row in either the same

9



PyTrackDat, Release 0.2.1

table or a different table, cannot be automatically detected. Foreign keys are very useful for reducing data duplication
and encoding complex data relationships.

In other cases, it may be desirable to limit a field to a range of data types. For example, if a specimen can be one of four
species, it is desirable to make a text field which can only store any of these four species’ names. The analyze script
does its best to detect these instances, but it may not detect all possible choices. Thus, text fields with automatically-
detected choice limitations should be verified manually and if needed, edited.

5.2 Design File Specification

5.2.1 Blocks

Blocks must be separated by at least one blank line in the CSV (i.e. 2 newlines.)

Block: First Row

The first row of a block contains only one piece of information: the name of the entity being represented, in singular
form (for example, “sample”) contained in the first column. The other columns of the block’s first row are ignored,
but can be used as column headers to make the design file more human-readable.

Thus, a block’s first (header) row may look like this:

sample this is ignored as is this . . .

Block: Following Rows – Field Descriptions

The following series of rows in a design file block contain a list of field descriptions, which are analogous to columns
in a standard spreadsheet layout. Each database field corresponds to each one of these rows in the design file.

The generic format for a design file field description row is the following:

CSV Column
Name

Database Field
Name

Data
Type

Nul-
lable?

Null
Values

De-
fault

De-
scrip-
tion

Show in
Table?

Additional
fields. . .

Each of these columns in the field description row has specific acceptable values which directly decide the resulting
database structure. As such, it is important to double-check these values if the automatic analyzer is used.

CSV Column Name

This cell should correspond exactly to the column name in the original data CSV file which stores data for field being
described.

Database Field Name

This cell contains the name of the field as it will appear in the database (as decided by the analyze.py script). It
should only contain lowercase characters, numbers, and underscores.

10 Chapter 5. Step 2: Design File Layout and Customization



PyTrackDat, Release 0.2.1

Data Type

This cell contains the data type of the field in question. It can assume one of the following values:

• auto key

• manual key

• foreign key

• integer

• float

• decimal

• boolean

• text

• date

• time

Nullable?

This cell contains a boolean (true or false) value which specifies whether the value of the field in the database can
be NULL. If the field contains any value other than “true”, “false” is inferred. Null is a special value which has
implications on data representation.

A variable field is nullable if it can be assigned either a value or null, signifying that for a specific table row (e.g. an
individual or observation) there is no value assignable.

Null Values

This cell contains a semicolon-separated list (;, optionally with surrounding spaces to make the cell contents more
readable) of values in the data CSV file which will be converted to a NULL value in the database.

Note that if this cell contains multiple entries, information is being lost, since multiple values in the original data are
mapped to a single value in the database, thus preventing the original data from being recovered identically.

An example of where multiple values could be useful is the following:

NA; N/A

In this case, these two values mean the same thing to a human reader but are completely different to the computer. If
NA is, for example, the only possible non-integer value in an integer field, it would make sense to map it to NULL.

Default

This cell contains a value, of the same type as would appear in the data CSV file, specifying the default value for the
field in the database.

Default values are used as the starting point when inputting a value into a field in the GUI.

These values are also used when no value is provided for a field when importing a CSV file. Don’t set a default if you
want a blank CSV entry to stay blank (or null, depending on settings) in the database.

5.2. Design File Specification 11



PyTrackDat, Release 0.2.1

Description

This cell should contain a succinct and comprehensive description of what the field means in the context of the dataset
the database is to contain, including explanations of possible values if non-obvious.

It is also used to display help text below the fields in the database single-item entry GUI.

Show in Table?

This cell contains a boolean (true or false) value which specifies whether the field in question should appear in the
table list view (where a list of all rows is shown.) If left blank, the cell will not appear.

Type-Specific Settings

Any cell after the description cell is type-specific and the valid values depend on what data type the field has. There
can be more than one type-specific setting available, and the exact number also depends on the field’s type. For a
description of each data type, including type-specific setting options, see below.

5.2.2 Data Type Descriptions

The following are all the data types currently supported by PyTrackDat. Watch out for additional type-specific settings
for some data types. These often can restrict the possible values that can be stored by the field in the database, and are
useful for data integrity purposes.

Some of these type-specific settings may be automatically detected by the ptd-analyze script; these should be
reviewed manually to make sure they cover all possible values which can be stored in the field.

auto key: Automatic Primary Key

Automatic primary key (identifier) for a database row; stored as an integer which starts at 1 and is increased by 1 for
every row added to a table.

Deletion of a row does not lead to re-assigning IDs above the now-deleted row’s ID; IDs are fixed as long as the
database is not completely re-created.

Design File Information

The following design file cells are ignored for auto key:

• CSV Column Name

• Nullable

• Null Values

• Default

12 Chapter 5. Step 2: Design File Layout and Customization



PyTrackDat, Release 0.2.1

Automatic primary keys are never nullable.

Type-Specific Settings

No type-specific settings are available for auto key.

manual key: Manually-Specified Primary Key

Manually-specified primary key (identifier, e.g. a unique collection number, a sample numer in a tissue archive, or
some other uniquely-identifying piece of information for each row in the table) for a database row; stored as text. The
value must be specified by the user when adding data to the database.

Manually-specified primary keys must be unique for a given row (/observation).

Design File Information

The following design file cells are ignored for manual key:

• Nullable

• Null Values

• Default

Manually-specified primary keys are never nullable.

Type-Specific Settings

No type-specific settings are available for manual key.

integer: Integer (Negative or Positive Whole Number)

Integers can be between -9 223 372 036 854 775 808 and 9 223 372 036 854 775 807. If a bigger-capacity field is
needed, use a text-type field instead.

Type-Specific Settings

No type-specific settings are available for integer.

float: Floating Point Number (Non-Fixed Precision Decimal)

Floating-point numbers can store a huge range of numbers, including numbers with decimal points. However, there are
precision issues, and whenever possible the decimal type should be used instead to prevent floating-point-specific
errors.

Type-Specific Settings

No type-specific settings are available for float.

5.2. Design File Specification 13



PyTrackDat, Release 0.2.1

decimal: Fixed-Precision Decimal Number

Decimal-typed numbers can store fixed-precision decimal numbers. Both the overall maximum length and decimal
precision must be specified, in number of digits. This type is useful for encoding significant figures and avoiding
floating-point-specific errors.

Type-Specific Settings

The decimal type requires two type-specific settings:

1. max_length: The maximum length a number can be, in digits; includes the decimal portion of the number.

2. precision: The number of digits after the decimal. Will be the same for any value stored in the database,
with the end 0-padded if necessary.

For example, a decimal field with a max length of 10 and a precision of 4 can store numbers such as
50.2300 or -999999.9999 or 999999.9999 (as a negative sign does not count as a digit) but cannot store
1000000.0000 because it is too long.

boolean: Boolean (True or False) Value

Boolean values are either true or false. If the field is made nullable, an additional option is added, NULL (or
unknown). If more than 3 values are needed (for example if there are two types of unknown values), a text field with
the choices setting should be used.

Type-Specific Settings

No type-specific settings are available for boolean.

text: Fixed- or Unbounded-Length Text

Text fields can store almost any value, unless special restrictions are put in place to restrict their domain. These fields
are often useful in situations where it does not make sense to restrict the column to certain values; for example in the
case of a description field.

Text fields can optionally be limited by any combination of:

1. A certain maximum character length. Values extending beyond this maximum length will not be accepted.

2. A list of specific values (think of this as an internal representation of a “dropdown”-type input, where only
a limited range of values are acceptable). For example, consider a specimen table’s sex field, where values
should be limited to male, female, and possibly unknown.

These limitations are controlled by the type-specific settings below.

Type-Specific Settings

The text type optionally can take up two type-specific settings:

1. max_length: The maximum length of the contents in the field in terms of number of characters.

2. options: A semicolon-separated list of possible values the text field can take on. Limiting the domain of a
field can be useful to speed up data entry, prevent typos, and restrict the domain of a field to exactly what is
desired.

14 Chapter 5. Step 2: Design File Layout and Customization



PyTrackDat, Release 0.2.1

date: Date

Represents a date, including month and year. Does not include any time information; for times, use a second column
with the time data type (described below). At the moment, no timezone information is stored, which should be
tracked manually (or put in the field description.)

Currently, PyTrackDat only accepts the ‘‘YYYY-MM-DD‘‘ format for dates.

Type-Specific Settings

No type-specific settings are available for date.

time: Time

Represents a time, including minutes and seconds. If seconds are left out in any passed values, the default seconds
value is 0. At the moment, no timezone information is stored, which should be tracked manually (or put in the field
description).

Currently, PyTrackDat only accepts the HH:MM or HH:MM:SS 24 hour formats for times.

Type-Specific Settings

No type-specific settings are available for time.

foreign key: Foreign Key (Cross-Relation)

Foreign keys are one of the most powerful features of relational databases, and in fact are what make then “relational”
at all. A foreign key is a field on one table which refers to the primary key of a row in another table (and in fact, can
refer to another row in the same table as well.)

This lets rows refer to one another, and can be used to prevent data duplication. Reducing data duplication is important
in preventing contradictory information in a dataset.

Type-Specific Settings

The foreign key type requires one type-specific setting:

1. target: The table which the foreign key field is pointing to. Remember that table names are specified in the
first column of the first row of a block in the design file.

For example, if a row in a table called sample refers to a row in a table called site, the target setting would be
site. This could have the semantic meaning that, whenever a value is present in a row with the foreign key field
set, that sample entry was collected at the specified site entry (representing an actual collection site).

This allows rows to be linked together. target does not have to refer to a different table; the same table could be
specified, allowing rows in a table to link to other rows in the same table.

5.2. Design File Specification 15



PyTrackDat, Release 0.2.1

16 Chapter 5. Step 2: Design File Layout and Customization



CHAPTER 6

Step 3: Database Generator

6.1 Running the Generator

The core of PyTrackDat is a database generator script, which uses a provided CSV design file (see above for the
format) to generate a database along with a web application which can be used to administer it. The generated
software is powered by the Django framework.

To run the database generator on a design file (ex. design.csv), run the following command:

ptd-generate design.csv site_name

Where design.csv is a path to the design file and site_name is the name of the web application that will be
generated.

The script will ask if the version being built is a ‘production build’. Answer n (no) for now.

It will also prompt for the details of an administrative user. Enter in a username and password for testing purposes.
The ‘email’ field is optional.

This will output a zip file, site_name.zip, in the PyTrackDat project directory. This package will be used to
deploy the site.

6.2 What is a production build?

A “production build” of an application (as opposed to a “development build”) is the version of the application that will
be used by all the users of the program, and is considered a usable version. The easiest way to understand a production
build is to consider the opposite, a development build. These versions of the application are only used for making sure
it works.

In the context of PyTrackDat, a production build is one that can be used by any designated users and will store the
“real” data. New data entered will be considered part of the actual datset. A development build will not work in
production, and is simply used to make sure everything works first.

17

https://www.djangoproject.com/


PyTrackDat, Release 0.2.1

Additional information must be provided to a production PyTrackDat build, specifically the URL of the server onto
which the application will be deployed (i.e. set up and ran).

Note about PyTrackDat development builds

PyTrackDat application development builds cannot export baRcodeR labels from the web interface. This is a known
issue and currently unfixable due to R and Python compatibility issues.

18 Chapter 6. Step 3: Database Generator



CHAPTER 7

Step 4: Testing

7.1 The Quick Way

PyTrackDat provides a script which helps test newly-created sites from the root PyTrackDat working directory. To
test a site named site_name_here, run the following command:

ptd-test site_name_here

7.2 The Manual Way

If for some reason the method above fails, the following manual procedure can be employed to test a PyTrackDat site.

To test the web application from the PyTrackDat directory, first change to the site directory within the temporary work
directory, tmp, which PyTrackDat will create, replacing site_name_here with the site name that you assigned
in the previous (generator) step. Then, activate the Python virtual environment. These actions can be done with the
following commands:

macOS/Linux:

cd tmp/site_name_here
source site_env/bin/activate

Windows:

cd tmp\site_name_here
site_env\Scripts\activate.bat

Then, run the development server from the command line with the following command, and navigate to the application
in your web browser at 127.0.0.1:8000:

macOS/Linux:

19



PyTrackDat, Release 0.2.1

python3 ./manage.py runserver

Windows:

python manage.py runserver

Afterwards, when testing is finished, to deactivate the site’s virtual environment, run the following command:

deactivate

7.3 When the Server is Running

While the development server is running, you can explore the site the same way you will be able to once it is finalized
and deployed on a server. This is the time to check and make sure the data format is correct, importing and exporting
your data works, and everything is behaving as expected.

Here is an overview checklist of what should be verified using this development version of the application

1. The data format, including names, descriptions, and types appears correct and corresponds with what will appear
in the data file imported.

2. All necessary tables are present.

3. All foreign keys (inter/intra-table links) are correct and work as expected.

4. Data types with an enforced choice of values include all desired choices, including ones for future data that may
not be used yet.

5. Data import works with data CSV files (if applicable).

6. Data export works and appears as expected.

Once you are done verifying, the server can be stopped. To do this, press Ctrl-C in the terminal window where the
server is running.

20 Chapter 7. Step 4: Testing



CHAPTER 8

Step 5: Deploying the Application

It is now time to deploy the final version of the application on a server. This allows the application to be accessed at all
times, from anywhere connected to the internet. User accounts are still used to restrict access to the data. Just because
the server is publically accessible doesn’t mean the data are!

There are multiple options for deployment. Below is a guide for deploying on a new “Virtual Private Server” (VPS) on
the DigitalOcean service. For more advanced users, there is also a guide for deploying on an existing server (though
many of the steps will be similar to DigitalOcean setup).

Instructions are written for Ubuntu Server 18.04 or 16.04 LTS; other distributions may require slightly different pro-
cedures.

Important Note: DigitalOcean is NOT required to deploy PyTrackDat. Any server running an operating system
which can host Docker containers is sufficient. DigitalOcean is a paid service; this may be restrictive to some. Free
options include adapting an existing computer with a world-accessible IP address or using Amazon AWS’ free tier
(which only lasts 12 months.)

8.1 Deploying the End Result on DigitalOcean

DigitalOcean is a cost-effective VPS (virtual private server) hosting provider. For $5 USD per month, users can create
a server on which the created web application and database can be hosted. For an additional $1 USD per month,
automatic backups can be enabled.

If you already have a server on which the application can be deployed, see the section below. The DigitalOcean service
provider is not specifically required to run the application.

8.1.1 Deployment Step 1: Create a DigitalOcean account

Create a DigitalOcean account on their signup page. Confirm the email used to create the account.

Make sure to enter in payment details that will allow a recurring charge of $5 USD per month (as of the time of writing,
the cheapest Droplet/VPS that one can create) for hosting the application.

21

https://cloud.digitalocean.com/registrations/new


PyTrackDat, Release 0.2.1

8.1.2 Deployment Step 2: Create a new droplet (virtual machine)

Once logged into the DigitalOcean dashboard, create a new virtual machine by clicking the “Create” button and
selecting “Droplets”.

Select “Ubuntu 18.04 x64” for the operating system.

For PyTrackDat, the smallest droplet size ($5 USD per month) is more than adequate, and the most cost effective
solution:

For an additional $1 USD per month, automatic backups can be enabled to keep historical versions of the whole
droplet. This may be useful for data integrity and restoring purposes.

Choose a data centre region closest to where most users will be accessing the database, for maximum performance.

Finally, choose a hostname, which can only contain alphanumeric characters, dashes, and periods. This uniquely
identifies the droplet within the account, and press “Create”.

An email will be sent to the address used to register the account. It will contain the newly-created droplet’s IP address
(4 numbers, separated by periods) and root password. These are used for logging in to the droplet, and for creating
the production (final) version of the PyTrackDat application, which will be uploaded to the server.

22 Chapter 8. Step 5: Deploying the Application



PyTrackDat, Release 0.2.1

8.1. Deploying the End Result on DigitalOcean 23



PyTrackDat, Release 0.2.1

8.1.3 Deployment Step 3: Log into the new droplet and set it up

Note for Windows Users: The DigitalOcean tutorials assume the user has a Linux or macOS system, and in general
server administration with these operating systems is much more straightforward. However, by downloading the
KiTTY utility mentioned in the Dependencies section of this tutorial, SSH can be used on Windows as well. Whenever
a tutorial mentions a command involving ssh username@server ..., KiTTY can be used instead. Follow our
mini-tutorial to learn how to sign into a droplet.

Follow DigitalOcean’s initial server setup guide to set up a new user account and a basic firewall on the new droplet.

After creating a new account and following the other instructions in the guide, disconnect from the ssh session by
using the following command:

exit

Then re-connect to the droplet using the newly-created non-root user account, typing in the password entered for the
new user:

ssh your_username@your.ip.address.here

Note for Windows users: Use the same, alternate method of accessing the remote server as before, using the mini-
tutorial provided and described above.

Now the virtual machine is ready for installing the software needed to host the PyTrackDat application.

Deployment steps 3 and 6 will take place on the droplet, and steps 4 and 5 will take place mostly on the local machine
(your own computer).

8.1.4 Deployment Step 4: Install Docker and Docker Compose on the Droplet

Docker

Docker is a “container platform” which allows web applications to run inside their own sub-environments. The re-
sulting PyTrackDat applications generated by the scripts are set up as Docker containers to make deploying them
easier.

Docker must be installed on any server being used to host a PyTrackDat application.

Follow DigitalOcean’s instruction guide, following only steps 1 and 2, to install Docker on the newly-created droplet.

Further steps cover knowledge not needed for this tutorial, although it may be helpful for further understanding the
Docker platform.

Docker Compose

Docker Compose is a system for orchestrating multiple Docker containers at once in a way which makes it easy to put
containers online or take them offline.

Install Docker Compose on the droplet by following DigitalOcean’s Docker Compose instruction guide, following
only step 1.

8.1.5 Deployment Step 5: Build the application’s production version (on your own
computer)

See the aside in step 3, entitled “what is a production build?”, for more information on why this process is needed.

24 Chapter 8. Step 5: Deploying the Application

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-18-04


PyTrackDat, Release 0.2.1

To build the production version of the database application, the ptd-generate script must be run again on your
local computer (i.e. not the new droplet), this time answering y (yes) to the question Is this a production
build?:

ptd-generate design.csv site_name

The script will prompt for a URL. This must match the URL that will be used to access the site. It can also be an IP
address. Whatever value is specified should not contain http://, https://, or a trailing slash:

Please enter the production site URL, without 'www.' or 'http://':

If a domain name has been purchased (which is outside the scope of this tutorial), additional steps will need to be
taken to attach it to the droplet. Nonetheless, the domain name should be entered at this step.

If an IP address is being used to access the droplet (a no-cost option and recommended if the droplet is just being used
to host the database), enter that into this prompt. The IP address has already been used in this tutorial to log into the
droplet. For example, one could enter the following:

Please enter the production site URL, without 'www.' or 'http://': 142.93.159.136

8.1.6 Deployment Step 6: Upload the application

Now that you have generated the production version of the site, it is time to upload it to the droplet and start it up.

From the PyTrackDat directory, use the following instructions (depending on the operating system on your local
computer) to upload the application.

First, make sure you are in the main PyTrackDat directory using cd.

When the ptd-generate script was used to generate the PyTrackDat application, it created a .zip file archive
in the main PyTrackDat directory called site_name.zip, based on whatever name was entered for site_name
when the script was run.

This archive contains everything needed to run the application, but it must first be uploaded to the server.

macOS or Linux

On macOS and Linux, a built-in utility called SCP is provided, which can copy a file to a remote server. Run the
following command, using the credentials used previously to access the server via ssh:

scp site_name.zip your_username@your.ip.address.here:~

This will copy the site .zip archive to the home directory of your user account on the droplet.

Windows

By default, Windows does not include a utility for copying files to remote servers. However, in the Dependencies
section earlier in the file, utilities are listed that can assist in this task. Download WinSCP in order to copy the zip file
to the server.

Follow our mini-tutorial for WinSCP to upload the .zip archive to the droplet.

8.1. Deploying the End Result on DigitalOcean 25



PyTrackDat, Release 0.2.1

8.1.7 Deployment Step 7: Start the application

To start the application, log into the droplet again, using SSH:

ssh your_username@your.ip.address.here

Note for Windows users: Use the same, alternate method of accessing the remote server as before, using the mini-
tutorial provided (see rationale above.)

Then, unzip the archive containing the application within your home folder on the server, substituting site_name
with whatever the archive uploaded to the server (in the previous step) is called:

sudo apt install unzip
unzip site_name.zip

Enter the application directory:

cd site_name

Use Docker Compose to build and start the application:

docker-compose up --build -d

And finally, allow the site to be accessed externally by adding a rule to the firewall:

sudo ufw allow http

Now, by going to the IP address attached to the droplet, the site should be visible. Log in using the username and
password entered into the ptd-generate script in order to manage data and other users.

8.2 Deploying the End Result on an Existing Linux Server

This guide assumes a moderate amount of prior knowlege about command-line Linux server administration, since the
specifics depend on the operating system version and particular configuration of the server in question.

8.2.1 Deployment Step 1: Install Docker and Docker Compose (If Not Already Done)

Follow something similar to DigitalOcean’s instruction guide, following only steps 1 and 2.

Then, install Docker Compose by following steps similar to DigitalOcean’s Docker Compose instruction guide, fol-
lowing only step 1.

These guides are for Ubuntu 18.04 LTS and installation specifics likely differ with other Linux distributions.

8.2.2 Deployment Step 2: Build the Application’s Production Version

To build the production version of the database application, the ptd-generate script must be run again on your
local computer (i.e. not the VM or server), this time answering y (yes) to the question Is this a production
build?:

ptd-generate design.csv site_name

The script will prompt for a URL. This must match the URL that will be used to access the site. It can also be an IP
address. Whatever value is specified should not contain http://, https://, or a trailing slash:

26 Chapter 8. Step 5: Deploying the Application

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-18-04


PyTrackDat, Release 0.2.1

Please enter the production site URL, without 'www.' or 'http://':

If deploying without a domain name, use the IP address when prompted for a URL.

8.2.3 Deployment Step 3: Upload the Application

Now that you have generated the production version of the site, it is time to upload it to the server and start it up.

From the PyTrackDat directory, follow the instructions in the above DigitalOcean tutorial to upload the application.
Swap the droplet IP address mentioned for the IP address or domain name of the server in question.

8.2.4 Deployment Step 4: Start the Application

To start the application, log into the server again, using SSH:

ssh your_username@your.ip.address.here

Note for Windows users: Use the same, alternate method of accessing the remote server as before, using the [mini-
tutorial](mini-tutorials/KiTTY.md) TODO: RE-LINK provided and described above.

Then, unzip the archive containing the application within your home folder on the server:

sudo apt install unzip
unzip site_name.zip

Enter the app directory:

cd site_name

Use Docker Compose to start the application:

docker-compose up --build --detach

And finally, allow the site to be accessed externally by adding a rule to the firewall. This command will depend on
what firewall is being used. For ufw, the following command can be used (assuming the container is bound to port
80):

sudo ufw allow http

Now, by going to the IP address or domain name attached to the server, the site should be visible. Log in using the
username and password entered into the ptd-generate script in order to manage data and other users.

8.3 Note about Ports and Configuration

These tutorials give instructions for serving the PyTrackDat application on the main HTTP port, port 80. If you want
to serve other content concurrently with the PyTrackDat application, additional configuration will be required.

8.3. Note about Ports and Configuration 27



PyTrackDat, Release 0.2.1

28 Chapter 8. Step 5: Deploying the Application



CHAPTER 9

An Example Database, Start to Finish

For a worked example of database creation, see the example in the GitHub repository.

29

https://github.com/pytrackdat/pytrackdat/tree/master/example


PyTrackDat, Release 0.2.1

30 Chapter 9. An Example Database, Start to Finish



CHAPTER 10

Updating the Schema

PyTrackDat applications have the ability to export CSV files from tables. These files are in a standard header-list of
entries CSV format, so to update the schema (i.e. add or remove columns), the following procedure can be used:

1. Export all tables as CSV files using the PyTrackDat-supplied action in the web interface.

2. Either use the downloaded CSV files in the ptd-analyze script to generate a new design file or use your
original design file. Make sure to restore any foreign keys (and other changes) from before if starting anew.

3. Modify the design file to include any desired modifications, such as new or altered columns. If needed, modify
the CSV files to reflect renamed or deleted columns. Make sure to make columns nullable/blank-able if you are
not providing values for all existing entries in the database.

4. Follow the instructions from elsewhere in this document to generate a new site. Replace the application using
the instructions below.

5. Import data using the “Import CSV” action provided by PyTrackDat. This should restore data to the original
state from before the changes, except with any changes in the design file reflected in the new application.

31



PyTrackDat, Release 0.2.1

32 Chapter 10. Updating the Schema



CHAPTER 11

Updating the site on DigitalOcean or similar

First, export the data currently stored in the web application (if any) via the online interface. Log into the PyTrackDat
application, select all data for each data type, and export individual CSV files.

The site can then be updated in a similar way to how it was initially uploaded.

First, SSH into the server (see previous instructions on how to do this). How this is done depends on your operating
system.

While logged into the server, change directory into the site:

cd site_name

Then, stop the application using Docker Compose:

docker-compose down

Go to the parent directory and move the site folder to a backup:

cd ..
mv site_name site_name_old_backup

At this point, you should create (or have created) the new version of the database. Either change the downloaded
CSV files to have the same headers as the original data files, or re-build the design file using the headers from the
downloaded CSV files. Make sure to re-generate the site using ptd-generate.

Upload the new PyTrackDat application .zip archive, using methods described previously in this tutorial.

Follow instructions from the “Deploying. . . ” section above for unzipping the archive and bringing the application
online using Docker Compose.

Finally, re-import the data using the built-in import function in any PyTrackDat application using the web interface.

33



PyTrackDat, Release 0.2.1

34 Chapter 11. Updating the site on DigitalOcean or similar



CHAPTER 12

Introduction

PyTrackDat databases are built on top of the Django framework, and specifically the built-in Django administration
system.

When a PyTrackDat database is running, it should be accessible via the configured URL (in the case of production
builds) or the URL localhost during local testing.

When this URL is first accessed, a log in page will appear:

Enter the administrative credentials you provided to the ptd-generate script to access the main dashboard:

This dashboard provides access to all tables in the database via a web interface. Filtering, importing, and exporting
options are also provided for each table.

35

http://djangoproject.com


PyTrackDat, Release 0.2.1

36 Chapter 12. Introduction



CHAPTER 13

Data Management

13.1 Importing Data

To import data into a particular table, first click on the dashboard entry for the table to access the table-specific
management page. An “Import CSV” button will be present in the upper left corner.

Clicking on this button will bring you to the upload page, where a CSV-formatted file can be uploaded. Rows in the
CSV file will be added to the database, assuming the CSV file is formatted correctly.

13.2 Exporting Data

To export data from a particular table, first click on the dashboard entry for the table to access the table-specific
management page. Select all data that you wish to export using the checkboxes available.

Then, use the dropdown action menu to select the “Export selected as CSV” action and click “Go”. This will download
a CSV-formatted file onto your local computer.

37



PyTrackDat, Release 0.2.1

38 Chapter 13. Data Management



CHAPTER 14

Exporting Labels with baRcodeR

baRcodeR is an R package for labeling, tracking, and organizing samples based on 2D barcodes (QR codes). In
production, a PyTrackDat application allows users to export labels for database table entries based on values of the
table’s primary key. This allows for the unique identification of physical objects (e.g. samples), linking them to their
corresponding database entries.

To export baRcodeR labels from a PyTrackDat application, first click on the dashboard entry for the table you wish to
export labels for. Select all data that you wish to label using the checkboxes available.

Then, use the dropdown action menu to select the “Export baRcodeR labels (PDF) for selected” action and click “Go”.
This will download a PDF file onto your local computer with the QR code labels.

39

https://github.com/yihanwu/baRcodeR


PyTrackDat, Release 0.2.1

40 Chapter 14. Exporting Labels with baRcodeR



CHAPTER 15

Advanced Filtering with Django Advanced Filters

PyTrackDat databases include the Django Advanced Filters module, which allows for creating and saving custom
filters for data in the database.

To create a filter for a particular table, first click on the dashboard entry for the table to access the table-specific
management page. Then, click the “Advanced Filter” button to create a new advanced filter.

Make sure to name the filter before saving it. After adding any filters you may want, click “Save” to store the filter.
This filter will now be accessible under the chosen name for future use, in the table-specific management page.

41

https://github.com/modlinltd/django-advanced-filters


PyTrackDat, Release 0.2.1

42 Chapter 15. Advanced Filtering with Django Advanced Filters



CHAPTER 16

GIS Data Support

macOS:

First, install Python 3 from either Homebrew or the Python website. The default macOS installation will not work.

brew install sqlite3
brew install spatialite-tools
brew install gdal
SPATIALITE_LIBRARY_PATH=/usr/local/lib/mod_spatialite.dylib PTD_GIS=true ./generate.
→˓py design_gis.csv test_gis

43



PyTrackDat, Release 0.2.1

44 Chapter 16. GIS Data Support



CHAPTER 17

KiTTY Mini Tutorial

KiTTY is a tool for logging into and administering remote servers via a command-line interface on a Windows com-
puter. During the deployment phase of a PyTrackDat application, you must log into a server or droplet in order to
prepare the server for the PyTrackDat application and deploy the application itself.

To download the utility, visit KiTTY’s download page and download kitty_portable.exe.

Open KiTTY, and the main window (used to log into a server) will appear.

For the host name, enter the IP address of the droplet (or the server) being accessed.

45

http://www.9bis.net/kitty/?page=Download


PyTrackDat, Release 0.2.1

You may get a popup menu warning you about signing into an unknown server. This occurs at the first login. It is safe
to proceed by pressing “Yes”.

You will now be prompted for a username, and then a password for the server. Use the username and password
provided to you when the droplet was created. If this is not your first time signing in, these may have changed (per the
DigitalOcean setup guide).

If you successfully authenticate, you will be presented with a command-line interface for the remote server. This can
be used to run the commands which are needed to set up PyTrackDat on the remote server (from the main tutorial).

If you are done accessing the server, you can exit by closing the KiTTY window.

46 Chapter 17. KiTTY Mini Tutorial



PyTrackDat, Release 0.2.1

47



PyTrackDat, Release 0.2.1

48 Chapter 17. KiTTY Mini Tutorial



CHAPTER 18

WinSCP Mini Tutorial for PyTrackDat Setup

Visit WinSCP’s download page and download the portable WinSCP version. Make sure to extract the WinSCP .zip
file before running the executable WinSCP.exe inside. This executable allows for the copying of files to remote
servers.

Once WinSCP has been downloaded, double click it to open it. It will show a window for logging into a server.

For the host name, enter the IP address of the droplet (or the server) being accessed. For the username and password,
use the username and password used to remotely log into the droplet or server. Then, click Login.

You may get a popup menu warning you about signing into an unknown server. This occurs at the first login. It is safe
to proceed by pressing “Yes”.

The main window will now be in focus. WinSCP will show a listing of files on the remote server as well. If the droplet
or server is newly created, there may not be any files visible yet.

49

https://winscp.net/eng/downloads.php


PyTrackDat, Release 0.2.1

In the left-hand pane, locate the ZIP file containing your site using the location dropdown and popup menus (in the
screenshot, G: KINGSTON is the location and site_name.zip is the ZIP file in question) and press the Upload
button.

After the “Upload” button is pressed, a small window will appear with upload settings. The defaults are fine; press
“OK” to continue.

After pressing “OK”, a progress bar will appear showing the file transfer. When this is done, the file is uploaded!

Now that the file is uploaded, it should be visible on the remote server, i.e. the right-hand pane:

If you see the file on the right, the ZIP file is now on the server! You can exit out of WinSCP and proceed with
unzipping and setting up the PyTrackDat application.

50 Chapter 18. WinSCP Mini Tutorial for PyTrackDat Setup



PyTrackDat, Release 0.2.1

51



PyTrackDat, Release 0.2.1

52 Chapter 18. WinSCP Mini Tutorial for PyTrackDat Setup



CHAPTER 19

Indices and tables

• genindex

• modindex

• search

53


	Dependencies
	Installing Python 3

	(Windows Only) SSH Utilities
	Mini-Tutorial: Using KiTTY
	Mini-Tutorial: Using WinSCP

	Getting PyTrackDat
	Getting Stable Versions Through PyPI
	Getting Development Versions (Advanced Users Only)

	(Optional) Step 1: Data Analyzer
	Step 2: Design File Layout and Customization
	Design File Customization
	Design File Specification

	Step 3: Database Generator
	Running the Generator
	What is a production build?

	Step 4: Testing
	The Quick Way
	The Manual Way
	When the Server is Running

	Step 5: Deploying the Application
	Deploying the End Result on DigitalOcean
	Deploying the End Result on an Existing Linux Server
	Note about Ports and Configuration

	An Example Database, Start to Finish
	Updating the Schema
	Updating the site on DigitalOcean or similar
	Introduction
	Data Management
	Importing Data
	Exporting Data

	Exporting Labels with baRcodeR
	Advanced Filtering with Django Advanced Filters
	GIS Data Support
	KiTTY Mini Tutorial
	WinSCP Mini Tutorial for PyTrackDat Setup
	Indices and tables

